بررسی توسعه زمانی آبشستگی اطراف آبشکن های نفوذناپذیر در کانال مستقیم و پیش بینی آن با شبکه های عصبی مصنوعی
author
Abstract:
This article doesn't have abstract
similar resources
مدلسازی آبشستگی اطراف آبشکن در قوسها با استفاده از منطق فازی و شبکه عصبی مصنوعی
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق د...
full textکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
full textبررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران
یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوکهای پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سالهای بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساطهای پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل میدهد. بر این اساس در بخش او...
full textکاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
full textمقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
full textMy Resources
Journal title
volume 4 issue 13
pages 39- 50
publication date 2011-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023